1. Numpy 기본함수
- arange
1
2arrange_array = np.arange(5)
arrange_arrayarray([0, 1, 2, 3, 4]) # array [0, 1, 2, 3, 4]의 형태로 반환
1
2arrange_array2 = np.arange(1, 9, 3)
arrange_array2array([1, 4, 7]) # 1부터 시작 9까지 3간격으로 array[1, 4, 7] 형태로 반환
- zoroes
1
2
3
4zeros_array = np.zeros((3,2))
print(zeros_array)
print("Data Type is:", zeros_array.dtype)
print("Data Shape is:", zeros_array.shape)[[0. 0.] [0. 0.] [0. 0.]] Data Type is: float64 Data Shape is: (3, 2)
- ones
1
2
3
4ones_array = np.ones((3,4), dtype='int32')
print(ones_array)
print("Data Type is:", ones_array.dtype)
print("Data Shape is:", ones_array.shape)[[1 1 1 1] [1 1 1 1] [1 1 1 1]] Data Type is: int32 Data Shape is: (3, 4)
- reshape
1
2
3after_reshape = ones_array.reshape(6,2)
print(after_reshape)
print("Data Shape is:", after_reshape.shape)[[1 1] [1 1] [1 1] [1 1] [1 1] [1 1]] Data Shape is: (6, 2)